Math 522 Exam 2 Solutions

1. Use the Euclidean algorithm to find x, y satisfying $90 x+57 y=3$.

We use long division five times as follows: $90=1 \cdot 57+33,57=1 \cdot 33+24,33=$ $1 \cdot 24+9,24=2 \cdot 9+6,9=1 \cdot 6+3$. Now, we solve for 3 , and repeatedly substitute in and simplify as follows: $3=1 \cdot 9-1 \cdot 6=1 \cdot 9-1(1 \cdot 24-2 \cdot 9)=$ $3 \cdot 9-1 \cdot 24=3(1 \cdot 33-1 \cdot 24)-1 \cdot 24=3 \cdot 33-4 \cdot 24=3 \cdot 33-4(1 \cdot 57-1 \cdot 33)=$ $7 \cdot 33-4 \cdot 57=7(1 \cdot 90-1 \cdot 57)-4 \cdot 57=7 \cdot 90-11 \cdot 57$. Hence $x=7, y=-11$ satisfy the linear Diophantine equation.
2. For any nonzero integers a, b, prove that $\operatorname{gcd}(a, b)|\operatorname{gcd}(a+b, a-b)| \operatorname{gcd}(2 a, 2 b)$. BONUS: Characterize those a, b for which $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, a-b)$.
$\operatorname{gcd}(a, b) \mid \operatorname{gcd}(a+b, a-b)$: If $d \mid a$ and $d \mid b$, then $d \mid(a+b)$ and $d \mid(a-b)$ by the Divisibility Properties Theorem. Hence $\operatorname{gcd}(a, b) \in C D(a, b) \subseteq C D(a+b, a-b)$, so $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(a+b, a-b)$ by the CD-PS Theorem.
$\operatorname{gcd}(a+b, a-b) \mid 2 \operatorname{gcd}(a, b):$ If $d \mid a+b$ and $d \mid a-b$, then $d \mid(a+b+a-b)$ and $d \mid(a+b-a+b)$ by the Divisibility Properties Theorem. That is, $d \mid 2 a$ and $d \mid 2 b$. Hence, $\operatorname{gcd}(a+b, a-b) \in C D(a+b, a-b) \subseteq C D(2 a, 2 b)$, so $\operatorname{gcd}(a+b, a-b) \mid \operatorname{gcd}(2 a, 2 b)$ by the CD-PS Theorem.

BONUS: We first prove the lemma that $\operatorname{gcd}(a c, b c)=c \operatorname{gcd}(a, b)$ for all nonzero integers a, b, c. This is proved with the last part of the D.P.T. $[C D(a c, b c)=c C D(a, b)]$. The proof proceeds in cases: if a, b are odd then $a+b, a-b$ are even and thus $2 \mid \operatorname{gcd}(a+b, a-b)$ while $2 \nmid \operatorname{gcd}(a, b)$ and hence $\operatorname{gcd}(a, b) \neq \operatorname{gcd}(a+b, a-b)$. If one of a, b is odd and the other is even, then $a+b, a-b$ are odd, hence $\operatorname{gcd}(a+b, a-b)$ is odd. But $\operatorname{gcd}(a+b, a-b) \mid \operatorname{gcd}(2 a, 2 b)=2 \operatorname{gcd}(a, b)$, and so $\operatorname{gcd}(a+b, a-b) \mid \operatorname{gcd}(a, b)$ by Theorem 2-3 so they are equal (differ by a unit) by the D.P.T. Finally, if a, b are both even we may pull out all their common factors of 2 from the gcd, via: $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, a-b)$ if and only if $\operatorname{gcd}\left(2 \frac{a}{2}, 2 \frac{b}{2}\right)=\operatorname{gcd}\left(2 \frac{a+b}{2}, 2 \frac{a-b}{2}\right)$, if and only if $2 \operatorname{gcd}\left(\frac{a}{2}, \frac{b}{2}\right)=2 \operatorname{gcd}\left(\frac{a+b}{2}, \frac{a-b}{2}\right)$, if and only if $\operatorname{gcd}\left(\frac{a}{2}, \frac{b}{2}\right)=\operatorname{gcd}\left(\frac{a+b}{2}, \frac{a-b}{2}\right)$. This reduces to one of the other two cases.

To summarize the bonus: $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, a-b)$ exactly when the highest power of 2 dividing a is different from the highest power of 2 dividing b. $($ otherwise $\operatorname{gcd}(a+b, a-b)=2 \operatorname{gcd}(a, b)=\operatorname{gcd}(2 a, 2 b))$
3. High score $=101$, Median score $=81$, Low score $=62$

